设 $A$ 为三阶矩阵, $\alpha_1, \alpha_2, \alpha_3$ 是线性无关的三维列向量,
且满足 $A \alpha_1=\alpha_1+\alpha_2+\alpha_3, A \alpha_2=2 \alpha_2+\alpha_3$,
$A \alpha_3=2 \alpha_2+3 \alpha_3$.
(1) 求矩阵 $B$ ,使得 $A\left(\alpha_1, \alpha_2, \alpha_3\right)=\left(\alpha_1, \alpha_2, \alpha_3\right) B$;
(2) 求矩阵 $A$ 的特征值;
(3) 求可逆矩阵 $\boldsymbol{P}$ ,使得 $\boldsymbol{P}^{-1} \boldsymbol{A P}$ 为对角矩阵.