清空
下载
撤销
重做
查看原题
已知函数 $f(x)$ 在 $[0,1]$ 上连续,在 $(0,1)$ 内可导,且 $f(0)=0, f(1)=1$. 证明:
(1) 存在 $\xi \in(0,1)$, 使得 $f(\xi)=1-\xi$.
(2) 存在两个不同的点 $\eta, \zeta \in(0,1)$ ,使得 $f^{\prime}(\eta) f^{\prime}(\zeta)=1$.
老师可以直接用手写笔在屏幕上讲解 讲解完毕后,可以点击下载把讲解结果保存下来 保存的图片可以在本站利用“识别”公式功能生成试题
不再提醒