设随机变量 $\boldsymbol{X}$ 与 $\boldsymbol{Y}$ 独立,其中 $\boldsymbol{X}$ 的概率分布为
$$
X \sim\left(\begin{array}{cc}
1 & 2 \\
0.3 & 0.7
\end{array}\right) \text {. }
$$
而 $\boldsymbol{Y}$ 的概率密度为 $f(y)$ ,求随机变量 $\boldsymbol{U}=\boldsymbol{X}+\boldsymbol{Y}$ 的概率密度 $g(u)$