查看原题
(1) 设 $f(x)=\frac{1}{\pi x}+\frac{1}{\sin \pi x}-\frac{1}{\pi(1-x)}, x \in\left[\frac{1}{2}, 1\right]$.试补充定义 $f(1)$ 使得 $f(x)$ 在 $\left[\frac{1}{2}, 1\right]$ 上连续.
(2) 设 $f(x)=\frac{1}{\sin \pi x}-\frac{1}{\pi x}-\frac{1}{\pi(1-x)}, x \in\left(0, \left.\frac{1}{2} \right\rvert\,\right.$. 试补充定义 $f(0)$ 使得 $f(x)$ 在 $\left[0, \frac{1}{2}\right]$ 上连续.
                        
不再提醒