已知平面区域 $D=\{(x, y) \mid 0 \leq x \leq \pi, 0 \leq y \leq \pi\}$ , $L$ 为 $D$ 的正向边界. 试证:
(1) $\oint_L x e^{\sin y} \mathrm{~d} y-y e^{-\sin x} \mathrm{~d} x=\oint_L x e^{-\sin y} \mathrm{~d} y-y e^{\sin x} \mathrm{~d} x$
(2) $\oint_L x e^{\sin y} \mathrm{~d} y-y e^{-\sin x} \mathrm{~d} x \geq 2 \pi^2$.