查看原题
已知两曲线 $y=f(x)$ 与 $y=\int_0^{\arctan x} e^{-t^2} \mathrm{dt}$ 在点 $(0,0)$处的切线相同,写出此切线方程,并求极限 $\lim _{n \rightarrow \infty} n f\left(\frac{2}{n}\right)$.
                        
不再提醒