清空
下载
撤销
重做
查看原题
设 $f(x)=\left\{\begin{array}{ll}\frac{1+x^2}{x} \arctan x, & x \neq 0 \\ 1, & x=0\end{array}\right.$ ,将 $f(x)$ 展开成 $x$的幂级数,并求级数 $\sum_{n=1}^{\infty} \frac{(-1)^n}{1-4 n^2}$ 的和.
老师可以直接用手写笔在屏幕上讲解 讲解完毕后,可以点击下载把讲解结果保存下来 保存的图片可以在本站利用“识别”公式功能生成试题
不再提醒