清空
下载
撤销
重做
查看原题
设函数 $S(x)=\int_0^x|\cos t| \mathrm{d} t$ :
(1) 当$n$为正整数,且$n \pi \leq x < (n+1) \pi$ 时,证明
$$
2 n \leq S(x) < 2(n+1) ;
$$
(2) 求 $\lim _{x \rightarrow+\infty} \frac{S(x)}{x}$.
老师可以直接用手写笔在屏幕上讲解 讲解完毕后,可以点击下载把讲解结果保存下来 保存的图片可以在本站利用“识别”公式功能生成试题
不再提醒