清空
下载
撤销
重做
查看原题
设 $\alpha(x)=\int_0^{5 x} \frac{\sin t}{t} \mathrm{~d} t, \beta(x)=\int_0^{\sin x}(1+t)^{\frac{1}{t}} \mathrm{~d} t$ ,则当 $x \rightarrow 0$ 时, $\alpha(x)$ 是 $\beta(x)$ 的
A. 高阶无穷小
B. 低阶无穷小
C. 同阶但不等价的无穷小
D. 等价无穷小
老师可以直接用手写笔在屏幕上讲解 讲解完毕后,可以点击下载把讲解结果保存下来 保存的图片可以在本站利用“识别”公式功能生成试题
不再提醒