查看原题
计算 $I=\iiint_{\Omega}\left(x^2+y^2\right) \mathrm{d} V$ ,其中 $\Omega$ 为平面曲线 $\left\{\begin{array}{l}y^2=2 z \\ x=0\end{array}\right.$ 绕 $z$ 轴旋转一周形成曲面与 $z=8$ 所围成的区域.
                        
不再提醒