查看原题
设 $M=\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{\sin x}{1+x^2} \cos ^4 x \mathrm{~d} x$ ,
$$
\begin{aligned}
& N=\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\left(\sin ^3 x+\cos ^4 x\right) \mathrm{d} x, \\
& P=\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\left(x^2 \sin ^3 x-\cos ^4 x\right) \mathrm{d} x
\end{aligned}
$$
A. $N < P < M$     B. $M < P < N$     C. $N < M < P$     D. $P < M < N$         
不再提醒