清空
下载
撤销
重做
查看原题
已知三阶矩阵 $\boldsymbol{B} \neq 0$ ,且 $\boldsymbol{B}$ 的每一个列向量都是以下方程组的解:
$$
\left\{\begin{array}{l}
x_1+2 x_2-2 x_3=0 \\
2 x_1-x_2+\lambda x_3=0 \\
3 x_1+x_2-x_3=0
\end{array}\right.
$$
(1) 求 $\lambda$ 的值;
(2) 证明 $|B|=0$
老师可以直接用手写笔在屏幕上讲解 讲解完毕后,可以点击下载把讲解结果保存下来 保存的图片可以在本站利用“识别”公式功能生成试题
不再提醒