查看原题
设 $f(x)$ 在闭区间 $[0, c]$ 上连续,其导数 $f^{\prime}(x)$ 在开区间 $(0, c)$ 内存在,且单调减少, $f(0)=0$ ,试应用拉格郎日中值定理证明不等式 $f(a+b) \leq f(a)+f(b)$ ,其中常数 $a, b$ 满足条件 $0 \leq a \leq b \leq a+b \leq c$.
                        
不再提醒