查看原题
双曲线 $\Gamma: \frac{x^2}{a^2}-\frac{y^2}{b^2}=1$ 的左右顶点 $A, B$ 的距离为 4 ,
$M, N$ 是 $\Gamma$ 右支上不重合的两动点且满足 $k_{B N}+2 k_{A M}=0$ ( $k_{A M}, k_{B N}$ 是相应直线的斜率). 求动直线 $M N$ 经过的定点的坐标.
                        
不再提醒