查看原题
设 $f_0(x), f_1(x)$ 是 $[0,1]$ 上的正值连续函数,满足:
$$
\begin{array}{r}
\int_0^1 f_0(x) \mathrm{d} x \leq \int_0^1 f_1(x) \mathrm{d} x . \\
\text { 设 } f_{n+1}=\frac{2 f_n^2(x)}{f_n(x)+f_{n-1}(x)},(n=1,2, \cdots) .
\end{array}
$$
证明: 序列 $a_n=\int_0^1 f_n(x) \mathrm{d} x,(n=1,2, \cdots)$ 单调递增且收敛.
                        
不再提醒