查看原题
如图, 直线 $y=\frac{\sqrt{5}}{2} x+\sqrt{5}$ 与 $x$ 轴, $y$ 轴分别交于点 $\mathrm{A}, \mathrm{B}$, 抛物线的顶点 $P$ 在直线 $\mathrm{AB}$ 上, 与 $x$ 轴的交点为 $\mathrm{C}, \mathrm{D}$, 其中点 $C$ 的坐标为 $(2,0)$. 直线 $\mathrm{BC}$ 与直线 PD 相交于点 $E$.

(1) 如图 2, 若抛物线经过原点 $O$.
①求该抛物线的函数表达式;
②求 $\frac{B E}{E C}$ 的值.
(2) 连结 $P C, \angle C P E$ 与 $\angle B A O$ 能否相等? 若能, 求符合条件的点 $P$ 的横坐标; 若不能, 试说明理由.
                        
不再提醒