清空
下载
撤销
重做
查看原题
设 $f(x)$ 在 $[0,1]$ 连续, 已知
$$
\int_0^1 f(x) \mathrm{d} x=a_0, \int_0^1 x f(x) \mathrm{d} x=a_1, \int_0^1 x^2 f(x) \mathrm{d} x=a_2 .
$$
试计算积分 $\int_0^1\left(\int_0^x\left(\int_0^y f(z) \mathrm{d} z\right) \mathrm{d} y\right) \mathrm{d} x$.
老师可以直接用手写笔在屏幕上讲解 讲解完毕后,可以点击下载把讲解结果保存下来 保存的图片可以在本站利用“识别”公式功能生成试题
不再提醒