设 $\boldsymbol{A}$ 为 3 阶实对称矩阵, $\boldsymbol{A}$ 的秋为 2 , 且
$$
\boldsymbol{A}\left(\begin{array}{cc}
1 & 1 \\
0 & 0 \\
-1 & 1
\end{array}\right)=\left(\begin{array}{cc}
-1 & 1 \\
0 & 0 \\
1 & 1
\end{array}\right) .
$$
(I) 求 $\boldsymbol{A}$ 的所有特征值与特征向量;
(II) 求矩阵 $\boldsymbol{A}$.