查看原题
设函数 $f(u)$ 具有 2 阶连续导数, $z=f\left(\mathrm{e}^{x^2-y^2}\right)$ 满足 $\frac{\partial^2 z}{\partial x^2}+\frac{\partial^2 z}{\partial y^2}=16 z\left(x^2+y^2\right)$, 若 $f(1)=0$, $f^{\prime}(1)=2$.
(I) 求 $f(u)$ 的表达式;
(II) 记 $g(x, y)=3 x y-x^3-y^3$, 求 $f[g(x, y)]$ 的极值.
                        
不再提醒