清空
下载
撤销
重做
查看原题
设二维随机变量 $(X, Y)$ 的概率密度为
$$
f(x, y)=\left\{\begin{array}{cc}
c x, & 0 < x < 1, \quad 0 < y < 1, \\
0, & \text { 其他, }
\end{array}\right.
$$
(1)求常数 $c$;
(2) 求 $(X, Y)$ 分别关于 $X, Y$ 的边缘摡率密度;
(3) 试问 $X$ 与 $Y$ 是否相互独立, 为什么?
老师可以直接用手写笔在屏幕上讲解 讲解完毕后,可以点击下载把讲解结果保存下来 保存的图片可以在本站利用“识别”公式功能生成试题
不再提醒