查看原题
已知平面上两定点 $\mathrm{A} 、 B$, 则所有满足 $\frac{|P A|}{|P B|}=\lambda(\lambda>0$ 且 $\lambda \neq 1)$ 的点 $P$ 的轨迹是一个圆心在 $A B$ 上,半径为 $\left|\frac{\lambda}{1-\lambda^2}\right| \cdot|A B|$ 的圆. 这个轨迹最先由古希腊数学家阿波罗尼斯发现, 故称作阿氏圆.已知棱长为 3 的正方体 $A B C D-A_1 B_1 C_1 D_1$ 表面上动点 $P$ 满足 $|P A|=2|P B|$, 则点 $P$ 的轨迹长度为
A. $2 \pi$     B. $\frac{4 \pi}{3}+\sqrt{3} \pi$     C. $\frac{4 \pi}{3}+\frac{\sqrt{3} \pi}{2}$     D. $(2+\sqrt{3}) \pi$         
不再提醒