查看原题
设 $a_n>0$ ,正项级数 $\sum_{n=1}^{\infty} a_n$ 发散,以 $S_n$ 表示前 $n$ 项的和,即 $S_n=a_1+a_2+\cdots+a_n=\sum_{k=1}^n a_k$.

证明: (1) 级数 $\sum_{n=1}^{\infty} \frac{a_n}{S_n}$ 发散.
(2) 级数 $\sum_{n=1}^{\infty} \frac{a_n}{S_n{ }^2}$ 收敛.
                        
不再提醒