设 $\boldsymbol{A}$ 为数域 $\mathbb{K}$ 上的 $n(n>1)$ 阶方阵, $\mathrm{r}(\boldsymbol{A})=n-1, \boldsymbol{A}^*$ 是 $\boldsymbol{A}$的伴随矩阵. 记齐次线性方程组 $\boldsymbol{A x}=\mathbf{0}$ 的解空间为 $V_{\boldsymbol{A}}, \boldsymbol{A}^* \boldsymbol{x}=\mathbf{0}$ 的解空间为 $V_{\boldsymbol{A}^*}$. 证明: $\mathbb{K}^n=V_{\boldsymbol{A}} \oplus V_{\boldsymbol{A}^*}$ 成立的充要条件是 $\operatorname{tr}\left(\boldsymbol{A}^*\right) \neq 0$.