设 $V$ 是数域 $\mathbb{K}$ 上的线性空间, 且 $\boldsymbol{\alpha}_1, \cdots, \boldsymbol{\alpha}_r$ 和 $\boldsymbol{\beta}_1, \cdots, \boldsymbol{\beta}_s$ 是 $V$中的两个向量组, 其秩分别是 $r_1, r_2$, 若 $\boldsymbol{C} \in M_{r \times s}(\mathbb{K})$ 满足 $\boldsymbol{\beta}_j=\sum_{i=1}^r c_{i j} \boldsymbol{\alpha}_i, j=1,2, \cdots, s .$
证明: $\mathrm{r}(\boldsymbol{C}) \leq r_2-r_1+r$.