清空
下载
撤销
重做
查看原题
设 $f(x)$ 为定义在 $[-1,1]$ 上的实函数, 存在 $M>0$, 使得对任何的 $x, y \in[-1,1]$ 成立 $|f(x)-f(y)| \leq M|x-y|$, 若对任何固定的 $x$, 成立 $\lim _{n \rightarrow \infty} n f\left(\frac{x}{n}\right)=0$,
证明: $f(x)$ 在 $x=0$ 处可导, 且导数为 0 .
老师可以直接用手写笔在屏幕上讲解 讲解完毕后,可以点击下载把讲解结果保存下来 保存的图片可以在本站利用“识别”公式功能生成试题
不再提醒