清空
下载
撤销
重做
查看原题
设 $f(t)=\iint_{x^2+y^2 \leqslant t^2} \arctan \left(1+x^2+y^2\right) \mathrm{d} x \mathrm{~d} y$, 则 $\lim _{t \rightarrow 0^{+}} \frac{f(t)}{\mathrm{e}^t-1-t}= $.
A. $\frac{\pi}{2}$
B. $\frac{\pi}{4}$
C. $\frac{\pi^2}{2}$
D. $\frac{\pi^2}{4}$
老师可以直接用手写笔在屏幕上讲解 讲解完毕后,可以点击下载把讲解结果保存下来 保存的图片可以在本站利用“识别”公式功能生成试题
不再提醒