查看原题
设一元函数 $f(x)$ 在 $[0,+\infty)$ 上可导, 且存在两个正数 $A < B$ 满足 $A < \left|f^{\prime}(x)\right| < B$,证明: $f\left(\sqrt{x^2+y^2}\right)$ 在 $\mathbb{R}^2$ 上一致连续,但 $f\left(x^3+y^3\right)$ 在 $\mathbb{R}^3$ 上不一致连续.
                        
不再提醒