设平面曲线 $L: f(x, y)=1$ 过第一象限的点 $A$ 和第三象限的点 $B, f(x, y)$ 有一阶连续偏导数, $\Gamma$ 为 $L$ 上从点 $A$ 到点 $B$ 的一段弧, 设 $I_1=\int_{\Gamma} f(x, y) \mathrm{d} x, I_2=\int_{\Gamma} f(x, y) \mathrm{d} s, I_3=\int_{\Gamma} f_x^{\prime}(x, y) \mathrm{d} x+$ $f_y^{\prime}(x, y) \mathrm{d} y$, 则
A. $I_1>I_3>I_2$.
B. $I_2>I_3>I_1$.
C. $I_3>I_1>I_2$.
D. $I_3>I_2>I_1$.