如图, 在四棱锥 $P-A B C D$ 中, 底面四边形 $A B C D$ 满足 $A B=C B=\sqrt{2}, A D=C D=\sqrt{5}$, $\angle A B C=90^{\circ}$, 棱 $P D$ 上的点 $E$ 满足 $P E=2 D E$.
(1) 证明: 直线 $C E / /$ 平面 $P A B$;
(2) 若 $P B=\sqrt{5}, P D=2 \sqrt{2}$, 且 $P A=P C$, 求直线 $C E$ 与平面 $P B C$ 所成角的正弦值.
$\text{A.}$
$\text{B.}$
$\text{C.}$
$\text{D.}$