若函数 $f(x)=\sqrt{\frac{1}{2} x+a^2}+\sqrt{x^2-1}-x$ 有零点, 则 $a$ 的取值范围是
$\text{A.}$ $\left[-\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right]$
$\text{B.}$ $\left(-\infty,-\frac{\sqrt{2}}{2}\right) \cup\left(\frac{\sqrt{2}}{2},+\infty\right)$
$\text{C.}$ $\left(0, \frac{1}{2}\right)$
$\text{D.}$ $\left(\frac{1}{2},+\infty\right)$