设总体$X$的概率密度为
$
f(x)=\left\{\begin{array}{cc}
(\theta+1) x^\theta, & 0 < x < 1 \\
0, & \text { 其他 }
\end{array}\right.
$
其中$\theta>-1$ 是末知参数, $X_1, X_2, \ldots, X_n$ 为来白总体的一个简单随机样本, $x_1, x_2, \ldots, x_n$ 为样本值, 求 $\theta$ 的矩 估计量和极大似然估计量.
$\text{A.}$
$\text{B.}$
$\text{C.}$
$\text{D.}$