$\alpha_1, \alpha_2$ 是矩阵 $\boldsymbol{A}$ 的分别对应于特征值 $\lambda_1, \lambda_2\left(\lambda_1 \neq \lambda_2\right)$ 的特征向量, 则
$\text{A.}$ 对于任意 $k_1 \neq 0, k_2 \neq 0, k_1 \alpha_1+k_2 \alpha_2$ 是 $\boldsymbol{A}$ 的特征向量;
$\text{B.}$ 对于任意 $k_1 \neq 0, k_2 \neq 0, k_1 \boldsymbol{\alpha}_1+k_2 \boldsymbol{\alpha}_2$ 不可能是 $\boldsymbol{A}$ 的特征向量;
$\text{C.}$ 存在常数 $k_1 \neq 0, k_2 \neq 0, k_1 \alpha_1+k_2 \alpha_2$ 是 $A$ 的特征向量;
$\text{D.}$ 存在惟一一组常数 $k_1 \neq 0, k_2 \neq 0, k_1 \alpha_1+k_2 \alpha_2$ 是 $\boldsymbol{A}$ 的特征向量.