科数网
试题 ID 6596
【所属试卷】
考研数学《微积分》专项训练来源微信公众号-高度数学
设 $x_1>0$, 数列 $\left\{x_n\right\}$ 满足 $x_{n+1}=\ln \left(\mathrm{e}^{x_n}-1\right)-\ln x_n$, 证明: $\lim _{n \rightarrow \infty} x_n$ 存在, 并求值.
A
B
C
D
E
F
答案:
答案与解析仅限VIP可见
解析:
答案与解析仅限VIP可见
设 $x_1>0$, 数列 $\left\{x_n\right\}$ 满足 $x_{n+1}=\ln \left(\mathrm{e}^{x_n}-1\right)-\ln x_n$, 证明: $\lim _{n \rightarrow \infty} x_n$ 存在, 并求值.
答案
答案与解析仅限VIP可见
解析
答案与解析仅限VIP可见