题号:6589    题型:填空题    来源:考研数学《微积分》专项训练来源微信公众号-高度数学
$I=\lim _{x \rightarrow 0} \frac{1}{x^2}\left\{\ln \left(1+2 x-x^2\right)-6\left[(1+x)^{\frac{1}{3}}-1\right]\right\}=$
0 人点赞 纠错 ​ ​ 14 次查看 ​ 我来讲解
答案:
答案:
$-\frac{7}{3} $

解析:

方法 1 (泰勒公式) 由于
$$
\begin{aligned}
\ln \left(1+2 x-x^2\right) & =\left(2 x-x^2\right)-\frac{1}{2}\left(2 x-x^2\right)^2+o\left(\left(2 x-x^2\right)^2\right) \\
& =2 x-x^2-\frac{1}{2}(2 x)^2+o\left(x^2\right)=2 x-3 x^2+o\left(x^2\right), \\
(1+x)^{\frac{1}{3}}-1 & =\frac{1}{3} x+\frac{1}{2} \cdot \frac{1}{3}\left(\frac{1}{3}-1\right) x^2+o\left(x^2\right)=\frac{1}{3} x-\frac{1}{9} x^2+o\left(x^2\right) .
\end{aligned}
$$
于是
$$
\begin{aligned}
I & =\lim _{x \rightarrow 0} \frac{1}{x^2}\left[\left(2 x-3 x^2\right)-6\left(\frac{1}{3} x-\frac{1}{9} x^2\right)+o\left(x^2\right)\right] \\
& =\lim _{x \rightarrow 0} \frac{1}{x^2}\left(-3+\frac{2}{3}\right) x^2=-\frac{7}{3} .
\end{aligned}
$$

关闭页面 下载Word格式