已知函数 $f(x)=\left\{\begin{array}{l}\frac{1}{x}-\sqrt{x}, x>0, \\ a x^2+2 a x+3, x \leqslant 0\end{array}\right.$ 有且仅有 3 个零点 $\alpha, \beta, \gamma$, 若 $\alpha < \beta < \gamma$, 则
$\text{A.}$ $\ln \alpha \beta=\gamma$
$\text{B.}$ $\ln \alpha \beta=\gamma-1$
$\text{C.}$ $\ln \alpha \beta < \gamma-1$
$\text{D.}$ $\ln \alpha \beta < \gamma$