科数网
题号:643    题型:单选题    来源:2013 年全国统一高考数学试卷(理科)(新课标Ⅰ)
设 $\triangle A_{n} B_{n} C_{n}$ 的三边长分别为 $a_{n}, b_{n}, c_{n}, \triangle A_{n} B_{n} C_{n}$ 的面积为 $S_{n}, n=1$ , 2, 3...若 $b_{1}>c_{1}, b_{1}+c_{1}=2 a_{1}, a_{n+1}=a_{n}, b_{n+1}=\frac{c_{n}+a_{n}}{2}, c_{n+1}=\frac{b_{n}+a_{n}}{2}$, 则 ( )
$\text{A.}$ $\left\{\mathrm{S}_{\mathrm{n}}\right\}$ 为递减数列 $\text{B.}$ $\left\{\mathrm{S}_{\mathrm{n}}\right\}$ 为递增数列 $\text{C.}$ $\left\{\mathbf{S}_{2 n-1}\right\}$ 为递增数列, $\left\{\mathbf{S}_{2 n}\right\}$ 为递减数列 $\text{D.}$ $\left\{\mathrm{S}_{2 \mathrm{n}-1}\right\}$ 为递减数列, $\left\{\mathrm{S}_{2 \mathrm{n}}\right\}$ 为递增数列
答案:

解析:

答案与解析:
答案仅限会员可见 微信内自动登录手机登录微信扫码注册登录 点击我要 开通VIP