题号:6398    题型:解答题    来源:2022浙江大学春季学期数学分析2期中测试(青春回忆版)
已知函数 $f(x, y)=\left\{\begin{array}{ll}\frac{x^2 y}{x^4+y^2}, & x^2+y^2 \neq 0 \\ 0, & x^2+y^2=0\end{array}\right.$;
证明: (1) $\frac{\partial f}{\partial x}(0,0), \frac{\partial f}{\partial y}(0,0)$ 存在;
(2) $\frac{\partial f}{\partial x}(x, y), \frac{\partial f}{\partial y}(x, y)$ 在点 $(0,0)$ 处不连续;
(3) $f(x, y)$ 在 $(0,0)$ 处不可微.
0 人点赞 纠错 ​ ​ 14 次查看 ​ 我来讲解
答案:
答案:
(1)证明:
$$
\begin{aligned}
& \frac{\partial f}{\partial x}(0,0)=\lim _{\substack{x \rightarrow 0 \\
y=0}} \frac{f(x, 0)-f(0,0)}{x-0}=\lim _{\substack{x \rightarrow 0 \\
y=0}} \frac{f(x, 0)-f(0,0)}{x}=\lim _{\substack{x \rightarrow 0 \\
y=0}} \frac{0-0}{x}=0 ; \\
& \frac{\partial f}{\partial y}(0,0)=\lim _{\substack{x=0 \\
y \rightarrow 0}} \frac{f(x, 0)-f(0,0)}{x-0}=\lim _{\substack{x=0 \\
y \rightarrow 0}} \frac{f(0, y)-f(0,0)}{y}=\lim _{\substack{x=0 \\
y \rightarrow 0}} \frac{0-0}{y}=0 ;
\end{aligned}
$$
因此 $\frac{\partial f}{\partial x}(0,0)=0$ 且 $\frac{\partial f}{\partial y}(0,0)=0$ 均存在.

(2)证明:
当 $x^2+y^2 \neq 0$ 时,
$$
\begin{aligned}
& \frac{\partial f}{\partial x}=\frac{2 x y \cdot\left(x^4+y^2\right)-x^2 y \cdot 4 x^3}{\left(x^4+y^2\right)^2}=\frac{2 x^5 y+2 x y^3-4 x^5 y}{\left(x^4+y^2\right)^2}=\frac{2 x y^3-2 x^5 y}{\left(x^4+y^2\right)^2} ; \\
& \frac{\partial f}{\partial y}=\frac{x^2 \cdot\left(x^4+y^2\right)-x^2 y \cdot 2 y}{\left(x^4+y^2\right)^2}=\frac{x^6+x^2 y^2-2 x^2 y^2}{\left(x^4+y^2\right)^2}=\frac{x^6-x^2 y^2}{\left(x^4+y^2\right)^2} ;
\end{aligned}
$$
因此:
$$
f_x(x, y)=\left\{\begin{array}{ll}
\frac{2 x y^3-2 x^5 y}{\left(x^4+y^2\right)^2}, & x^2+y^2 \neq 0 \\
0, & x^2+y^2=0
\end{array} \text {, 选取 } y=2 x^2\right. \text { 时: }
$$

$$
\begin{aligned}
& \lim _{\substack{x \rightarrow 0 \\
y=2 x^2}} f_x(x, y)=\lim _{\substack{x \rightarrow 0 \\
y=2 x^2}} \frac{2 x y^3-2 x^5 y}{\left(x^4+y^2\right)^2}=\lim _{x \rightarrow 0} \frac{2 x \cdot\left(2 x^2\right)^3-2 x^5 \cdot 2 x^2}{\left[x^4+\left(2 x^2\right)^2\right]^2}=\lim _{x \rightarrow 0} \frac{2 x \cdot 8 x^7-4 x^7}{\left(x^4+4 x^4\right)^2} \\
& =\lim _{x \rightarrow 0} \frac{12 x^7}{\left(5 x^4\right)^2}=\lim _{x \rightarrow 0} \frac{12 x^7}{25 x^8}=\frac{12}{25} \lim _{x \rightarrow 0} \frac{1}{x}=\infty, \text { 极限不存在; } \\
& f_y(x, y)=\left\{\begin{array}{l}
\frac{x^6-x^2 y^2}{\left(x^4+y^2\right)^2}, x^2+y^2 \neq 0 \\
0,
\end{array}, \text { 选取取 } y=2 x^2\right. \text { 时: } \\
& \lim _{\substack{x \rightarrow 0 \\
y=2 x^2}} f_y(x, y)=\lim _{x \rightarrow 0} \frac{x^6-x^2 y^2}{\left(x^4+y^2\right)^2}=\lim _{x \rightarrow 0} \frac{x^6-x^2 \cdot\left(2 x^2\right)^2}{\left[x^4+\left(2 x^2\right)^2\right]^2}=\lim _{x \rightarrow 0} \frac{-3 x^6}{25 x^8} \\
& =-\frac{3}{25} \lim _{x \rightarrow 0} \frac{1}{x^2}=\infty, \text { 极限不存在; }
\end{aligned}
$$
因此 $\frac{\partial f}{\partial x}(x, y), \frac{\partial f}{\partial y}(x, y)$ 在点 $(0,0)$ 处不连续.

(3)证明 : 二重极限存在 $\Longleftrightarrow$ 关于收敛点距离一致收玫
只需证明极限 $\lim _{(x, y) \rightarrow(0,0)} \frac{x^2 y}{\left(x^4+y^2\right) \sqrt{x^2+y^2}}$ 不存在
也即极坐标下 $\lim _{r \rightarrow 0^{+}} \frac{1}{r^2 \cos ^4 \theta+\sin ^2 \theta}$ 关于 $r$ 不一致收敛;
这是显然的, 只需要取 $\theta=0$ 即可有: $\lim _{r \rightarrow 0^{+}} \frac{1}{r^2 \cos ^4 \theta+\sin ^2 \theta} \stackrel{\theta=0}{=} \lim _{r \rightarrow 0^{+}} \frac{1}{r^2}=+\infty$.
因此 $f(x, y)$ 在 $(0,0)$ 处不可微.
注: 事实上, 二重极限存在 $\Longleftrightarrow$ 关于收玫点距离一致收玫.
也即: $\lim _{\substack{x \rightarrow 0 \\ y \rightarrow 0}} f(x, y)=A \Longleftrightarrow f(r \cos \theta, r \sin \theta) \rightrightarrows 0\left(r \rightarrow 0^{+}\right)$.
①点击 收藏 此题, 扫码注册关注公众号接收信息推送(一月四份试卷,中1+高2+研1)
② 程序开发、服务器资源都需要大量的钱,如果你感觉本站好或者受到到帮助,欢迎赞助本站,赞助方式:微信/支付宝转账到 18155261033

关闭


试题打分
①此题难易度如何

②此题推荐度如何

确定