题号:6397    题型:解答题    来源:2022浙江大学春季学期数学分析2期中测试(青春回忆版)
$$
f(x, y)=\left\{\begin{array}{ll}
x y \sin \frac{1}{x^2+y^2}, & x^2+y^2 \neq 0 \\
0, & x^2+y^2=0
\end{array} ;\right.
$$
证明:
(1) $\lim _{t \rightarrow 0^{+}} f(t \cos \alpha, t \sin \alpha)=f(0,0)$;
(2) $\lim _{(x, y) \rightarrow(0,0)} f(x, y)=f(0,0)$.
0 人点赞 纠错 ​ ​ 21 次查看 ​ 我来讲解
答案:
答案:
分析: 利用放缩的思想来证明即可.
(1)证明: $\begin{aligned} f(t \cos \alpha, t \sin \alpha) & =t^2 \cos \alpha \sin \alpha \cdot \sin \frac{1}{(t \cos \alpha)^2+(t \sin \alpha)^2} \\ & =t^2 \cos \alpha \sin \alpha \cdot \sin \frac{1}{t^2\left(\cos ^2 \alpha+\sin ^2 \alpha\right)} \\ & =t^2 \cos \alpha \sin \alpha \cdot \sin \frac{1}{t^2}\end{aligned}$
由于 $|f(t \cos \alpha, t \sin \alpha)|=\left|t^2 \cos \alpha \sin \alpha \cdot \sin \frac{1}{t^2}\right| \leqslant t^2$;
故当 $t \rightarrow 0^{+}$时: $t^2 \rightarrow 0$, 即: $f(t \cos \alpha, t \sin \alpha)=f(0,0)$.
(2)证明: 由于 $|f(x, y)|=\left|x y \sin \frac{1}{x^2+y^2}\right| \leqslant x^2+y^2$;
当 $(x, y) \rightarrow(0,0)$ 时, $x^2+y^2 \rightarrow 0$, 即: $\lim _{(x, y) \rightarrow(0,0)} f(x, y)=f(0,0)$.

关闭页面 下载Word格式