已知圆 $A_1:(x+1)^2+y^2=16$, 直线 $l_1$ 过点 $A_2(1,0)$ 且与圆 $A_1$ 交于点 $B, C, B C$ 中点为 $D$, 过 $A_2 C$ 中点 $E$
且平行于 $A_1 D$ 的直线交 $A_1 C$ 于点 $P$, 记 $P$ 的轨迹为 $\Gamma$.
(1) 求 $\Gamma$ 的方程;
(2) 坐标原点 $O$ 关于 $A_1, A_2$ 的对称点分别为 $B_1, B_2$, 点 $A_1, A_2$ 关于直线 $y=x$ 的对称点分别为 $C_1, C_2$, 过 $A_1$ 的直线 $l_2$ 与 $\Gamma$ 交于点 $M, N$, 直线 $B_1 M, B_2 N$ 相交于点 $Q$. 请从下列结论中, 选择一个正确的结论并给予 证明.
①$\triangle Q B_1 C_1$ 的面积是定值;② $\triangle Q B_1 B_2$ 的面积是定值:③$\triangle Q C_1 C_2$ 的面积是定值.
$\text{A.}$
$\text{B.}$
$\text{C.}$
$\text{D.}$