科数网
题号:6040    题型:解答题    来源:福建省2023届高中毕业班数学学科适应性练习试题及解答
$\triangle A B C$ 的内角 $A, B, C$ 的对边分别为 $a, b, c$, 且 $b=2 c \sin \left(A+\frac{\pi}{6}\right)$.
(1) 求 $C$;
(2) 若 $c=1, D$ 为 $\triangle A B C$ 的外接圆上的点, $\overrightarrow{B A} \cdot \overrightarrow{B D}=\overrightarrow{B A}^2$, 求四边形 $A B C D$ 面积的最大值.
答案:

解析:

答案与解析:
答案仅限会员可见 微信内自动登录手机登录微信扫码注册登录 点击我要 开通VIP