题号:
5951
题型:
解答题
来源:
共创考研辅导中心全国硕士研究生入学统一考试模拟试卷
设 $I_n=\int_0^{\frac{\pi}{4}} \sin ^n x \cos x d x, n=0,1,2 \cdots$, (I) 求 $I_n$; (II) 求级数 $\sum_{n=0}^{\infty}\left(n^2+3 n+3\right) I_n$ 的和.
0
人点赞
纠错
15
次查看
我来讲解
答案:
答案:
( I) $I_n=\int_0^{\frac{\pi}{4}} \sin ^n x \cos x d x=\int_0^{\frac{\pi}{4}} \sin ^n x d \sin x=\left.\frac{\sin ^{n+1} x}{n+1}\right|_0 ^{\frac{\pi}{4}}=\frac{\left(\frac{\sqrt{2}}{2}\right)^{n+1}}{n+1}$,
(II) 令 $f(x)=\sum_{n=0}^{\infty} \frac{\left(n^2+3 n+3\right)}{n+1} x^{n+1}=\sum_{n=0}^{\infty}\left[(n+2) x^{n+1}+\frac{x^{n+1}}{n+1}\right]$,
$$
\begin{aligned}
& \sum_{n=0}^{\infty}(n+2) x^{n+1}=\sum_{n=0}^{\infty}(n+1) x^n-1=\left(\frac{1}{1-x}\right)^{\prime}-1=\frac{2 x-x^2}{(1-x)^2}, \\
& \sum_{n=0}^{\infty} \frac{x^{n+1}}{n+1}=\int_0^x \frac{1}{1-t} d t=-\ln (1-x), \\
& f(x)=\frac{2 x-x^2}{(1-x)^2}-\ln (1-x), x \in(-1,1) \\
& \sum_{n=0}^{\infty}\left(n^2+3 n+3\right) I_n=f\left(\frac{1}{\sqrt{2}}\right)=\frac{2 \frac{\sqrt{2}}{2}-\frac{1}{2}}{\left(1-\frac{\sqrt{2}}{2}\right)^2}-\ln \left(1-\frac{\sqrt{2}}{2}\right)=\frac{2(2 \sqrt{2}-1)}{(2-\sqrt{2})^2}-\ln (2-\sqrt{2})+\ln 2 .
\end{aligned}
$$
关闭页面
下载Word格式