科数网
题号:5800    题型:解答题    来源:2023届辽宁省鞍山市普通高中高三第二次质量监测数学试题
抛物线 $C: y^2=2 p x(p>0)$ 上的点 $M\left(1, y_0\right)$ 到抛物线 $C$ 的焦点 $F$ 的距离为 $2, A 、 B$ (不与 $O$ 重合) 是抛物线 $C$ 上两个动点, 且 $O A \perp O B$.
(1) 求抛物线 $C$ 的标准方程;
(2) $x$ 轴上是否存在点 $P$ 使得 $\angle A P B=2 \angle A P O$ ? 若存在, 求出点 $P$ 的坐标, 若不存 在, 说明理由.
答案:

解析:

答案与解析:
答案仅限会员可见 微信内自动登录手机登录微信扫码注册登录 点击我要 开通VIP