在数列 $\left\{a_n\right\}$ 中, $a_1=\frac{4}{9},(3 n+9) \cdot(n+1)^2 a_{n+1}=(n+2)^3 a_n$.
(1) 求 $\left\{a_n\right\}$ 的通项公式:
(2) 设 $\left\{a_n\right\}$ 的前 $n$ 项和为 $S_n$, 证明: $S_n < \frac{5}{4}-\frac{2 n+5}{4 \cdot 3^n}$.
$\text{A.}$
$\text{B.}$
$\text{C.}$
$\text{D.}$