(1)求 $\frac {d}{dx} \int _{0}^{x^{2}}xf(x-t)dt$.
(2)设$f(x)$连续,且 $g(x)= \int _{0}^{x}x^{2}f(x-t)dt$, 求$g'(x)$.
$\text{A.}$ 若 $\lim \limits _{x \rightarrow 0^{ }}f(x)=0$, 则 $\lim \limits _{x \rightarrow 0^{ }}f'(x)=0$
$\text{B.}$ 若 $\lim \limits _{x \rightarrow 0^{ }}f'(x)=0$, 则 $\lim \limits _{x \rightarrow 0^{ }}f(x)=0$
$\text{C.}$ 若 $\lim \limits _{x \rightarrow \infty }f(x)= \infty $, 则 $\lim \limits _{x \rightarrow \infty }f'(x)= \infty$
$\text{D.}$ 若 $\lim \limits {x \rightarrow \infty }f'(x)=A>0$, 则 $\lim \limits {x \rightarrow \infty }f(x)= \infty$