科数网
题号:4922    题型:解答题    来源:
设对一切的$x$,有$f(x 1)=2f(x)$,且当$x\in[0,1]$时$f(x) =x(x^2-1)$, 讨论函数$f(x)$在$x=0$处的可导性.
$\text{A.}$ 若 $\lim \limits _{x \rightarrow 0^{ }}f(x)=0$, 则 $\lim \limits _{x \rightarrow 0^{ }}f'(x)=0$ $\text{B.}$ 若 $\lim \limits _{x \rightarrow 0^{ }}f'(x)=0$, 则 $\lim \limits _{x \rightarrow 0^{ }}f(x)=0$ $\text{C.}$ 若 $\lim \limits _{x \rightarrow \infty }f(x)= \infty $, 则 $\lim \limits _{x \rightarrow \infty }f'(x)= \infty$ $\text{D.}$ 若 $\lim \limits {x \rightarrow \infty }f'(x)=A>0$, 则 $\lim \limits {x \rightarrow \infty }f(x)= \infty$
答案:

解析:

答案与解析:
答案仅限会员可见 微信内自动登录手机登录微信扫码注册登录 点击我要 开通VIP