题号:4801    题型:解答题    来源:2024全国硕士研究生招生考试考研数学模拟试卷
若二元函数 $f(u, v)$ 对每个变量都具有二阶连续偏导数, 并且满足 $u \frac{\partial f}{\partial u}+v \frac{\partial f}{\partial v}=4 f(u, v)$, 并且 满足 $\frac{\partial^2 f}{\partial u^2}+\frac{\partial^2 f}{\partial v^2}=u^2+v^2$ 。
(1) 求证: $\left\{\begin{array}{l}u^2 \frac{\partial^2 f}{\partial u^2}+2 u v \frac{\partial^2 f}{\partial u \partial v}+v^2 \frac{\partial^2 f}{\partial v^2}=12 f(u, v) \\ v^2 \frac{\partial^2 f}{\partial u^2}-2 u v \frac{\partial^2 f}{\partial u \partial v}+u^2 \frac{\partial^2 f}{\partial v^2}=\left(u^2+v^2\right)^2-12 f(u, v)\end{array}\right.$
(2) 记 $g(x, y)=f\left(\mathrm{e}^{\lambda x} \cos y, \mathrm{e}^{\lambda x} \sin y\right)$, 其中 $\lambda$ 是一个常数, 求解 $\operatorname{div}(\operatorname{grad} g)$ 。
0 人点赞 收藏 ​ ​ 21 次查看 我来讲解
答案:
答案仅限会员可见,新注册账户免费送7天会员,价格 30元/30天, 200元/年, 999元/终身 微信扫码支付,会员可无限制查看下载试题
①点击 首页查看更多试卷和试题 , 点击查看 本题所在试卷
下载本题Word版 下载本题PDF版 点击 赞助本站

关闭