已知方程组
$$
\left\{\begin{array}{l}
a_1 x+b_1 y+c_1 z=d_1 \\
a_2 x+b_2 y+c_2 z=d_2 \\
a_3 x+b_3 y+c_3 z=d_3
\end{array}\right.
$$
无解,记
$$
\boldsymbol{A}=\left[\begin{array}{lll}
a_1 & b_1 & c_1 \\
a_2 & b_2 & c_2 \\
a_3 & b_3 & c_3
\end{array}\right], \quad \boldsymbol{b}=\left[\begin{array}{l}
d_1 \\
d_2 \\
d_3
\end{array}\right], \quad(\boldsymbol{X} \quad \boldsymbol{Y})
$$ 为分开矩阵,下列说法正确的是
①. $\boldsymbol{A x}=\mathbf{0}$ 有无穷多解
②. 若 $R(\boldsymbol{A})=2$, 则 $\boldsymbol{A}^* \boldsymbol{b}=\mathbf{0}$
③. $R\left(\begin{array}{ll}\boldsymbol{A} & \boldsymbol{b}\end{array}\right)-R(\boldsymbol{A})=2$ 是可能成立的
④. 若 $\boldsymbol{A}$ 有且仅有两行成比例, 则该方程组所对应的平面的交线个数为 2 个。
$\text{A.}$ ①④
$\text{B.}$ ①②③
$\text{C.}$ ①③
$\text{D.}$ ②④