2. 如果一个二元函数 $f(x, y)$ 可以写为一个关于 $x$ 的函数 $g(x)$ 乘以一个关于 $y$ 的函数 $h(y)$, 也就是 $f(x, y)=g(x) h(y)$ 的形式, 我们把符合这样的情况的函数叫做 “二元函数 $f(x, y)$ 关于变量 $x, y$ 可分离”, 假定下列的函数中 $f(x, y)$ 具有二阶连续偏导数, 则下列说法中不正确的是 ( )
①. 若 $f(x, y)=x y \mathrm{e}^{x+y}$, 则 $f(x, y)$ 关于变量 $x, y$ 可分离
②. 若 $f(x, y)=(x+y) \mathrm{e}^{x y}$, 则 $f(x, y)$ 关于变量 $x, y$ 可分离
③. 若 $f(x, y)>0$ 并且 $\frac{\partial^2(\ln f(x, y))}{\partial x \partial y}=0$, 则 $f(x, y)$ 关于变量 $x, y$ 可分离
④. 若 $f(x, y)>0$ 并且满足 $\frac{\partial f}{\partial x} \cdot \frac{\partial f}{\partial y}=\frac{\partial^2 f}{\partial x \partial y} \cdot f(x, y)$, 则 $f(x, y)$ 关于变量 $x, y$ 可分离
$\text{A.}$ ②
$\text{B.}$ ①③④
$\text{C.}$ ②④
$\text{D.}$ ①③