科数网
试题 ID 4377
【所属试卷】
2023年贵州省 高考备考针对性联考(理科数学)
已知数列 $\left\{a_n\right\}$ 是递增的等比数列. 设其公比为 $q$, 前 $n$ 项和为 $S_n$, 并且唡足 $a_1+a_5=34,8$ 是 $a_2$ 与 $a_4$ 的等比中项.
(1) 求数列 $\left\{a_n\right\}$ 的通项公式;
(2) 若 $b_n=n \cdot a_n, T_n$ 是 $b_n$ 的前 $n$ 项和, 求使 $T_n-n \cdot 2^{n+1}>-100$ 成立的最大正整数 $n$ 的值.
A
B
C
D
E
F
答案:
答案与解析仅限VIP可见
解析:
答案与解析仅限VIP可见
已知数列 $\left\{a_n\right\}$ 是递增的等比数列. 设其公比为 $q$, 前 $n$ 项和为 $S_n$, 并且唡足 $a_1+a_5=34,8$ 是 $a_2$ 与 $a_4$ 的等比中项.
(1) 求数列 $\left\{a_n\right\}$ 的通项公式;
(2) 若 $b_n=n \cdot a_n, T_n$ 是 $b_n$ 的前 $n$ 项和, 求使 $T_n-n \cdot 2^{n+1}>-100$ 成立的最大正整数 $n$ 的值.
答案
答案与解析仅限VIP可见
解析
答案与解析仅限VIP可见