题号:4267    题型:单选题    来源:湖北省重点高中智学联盟2022 年秋季高二年级期末联考
在平面直角坐标系中, 定义 $|x|+|y|$ 称为点 $P(x, y)$ 的 “ $\delta$ 和”, 其中 $O$ 为坐标原点, 对
于下列结论: (1) “ $\delta$ 和” 为 1 的点 $P(x, y)$ 的轨迹围成的图形面积为 2 ; (2) 设 $P$ 是直
线 $2 x-y-4=0$ 上任意一点, 则点 $P(x, y)$ 的 “ $\delta$ 和” 的最小值为 2 ; (3)设 $P$ 是直线
$a x-y+b=0$ 上任意一点, 则使得 “ $\delta$ 和” 最小的点有无数个” 的充要条件是 $a=1$;
设 $P$ 是椭圆 $x^2+\frac{y^2}{2}=1$ 上任意一点, 则 “ $\delta$ 和”的最大值为 $\sqrt{3}$. 其中正确的结论序号为
$ \text{A.}$ (1) (2) (3) $ \text{B.}$ (1) (2) (4) $ \text{C.}$ (1) (3) (4) $ \text{D.}$ (2) (3)(4)
0 人点赞 收藏 ​ ​ 17 次查看 我来讲解
答案:
答案仅限会员可见,新注册账户免费送7天会员,价格 30元/30天, 200元/年, 999元/终身 微信扫码支付,会员可无限制查看下载试题

解析:

①点击 首页查看更多试卷和试题 , 点击查看 本题所在试卷
下载本题Word版 下载本题PDF版 点击 赞助本站

关闭